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Abstract
We derive a new class of integrable autonomous mappings which possess
invariants biquartic in the dependent variables. We link these mappings
to discrete Painlevé equations. We show how mappings with biquartic
invariants can be naturally built up from the requirement that their solutions be
parametrized in terms of elliptic functions.

PACS numbers: 02.30.Ik, 02.30.Ks

1. Introduction

The quest for integrable discrete systems has been particularly active over the past decade.
Foremost among the results of this collective effort was the discovery of the discrete analogues
of the Painlevé equations [1]. To date several methods exist for the systematic derivation of
integrable discrete systems. However what remains of capital value are what are colloquially
called integrability detectors. They are customarily based on some property which is of
universal occurrence in integrable systems to the point that its absence is considered as an
indication of nonintegrability. The usual procedure is to postulate a functional form for the
discrete system containing enough freedom in the form of adjustable parameters, and fix the
value of the latter through the application of the integrability criterion.

One of the first successful integrability criteria proposed was that of the singularity
confinement [2]. Its principle is based on the observation that for mappings integrable through
spectral methods any spontaneous (i.e. initial condition dependent) singularity disappears after
a few iteration steps. The singularity confinement criterion has been particularly useful for
the derivation of the discrete Painlevé equations. As was shown recently [3] this criterion is
not sufficient because it does not provide control over the growth of the solution of a given
mapping at infinity, a feature which, from the results of Ablowitz et al [4], is expected to
play an important role in integrability. Thus in [5] a combination of this criterion with the
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Nevanlinna theory (which is specially tailored to the study of the growth of meromorphic
functions) was proposed resulting in a criterion which is expected to be both necessary and
sufficient.

A different approach, more directly based on the growth properties of rational mappings,
is the one known under the name of algebraic entropy [6]. The latter is a quantity which
is greater than zero when the degree of the iterates of some initial data grows exponentially
or faster, a property which is considered as an indication of nonintegrability. The method
of the study of degree growth has been applied to a host of discrete systems confirming the
integrability of previously obtained mappings and helping in the discovery of new ones. It
constitutes a well-adapted tool for the exploration of the domain of third-order mappings
where very few results exist to date [7].

2. A mapping with biquartic invariant

Before embarking upon the analysis of third-order systems it seemed fit to perform a detailed
study of second-order mappings for which several results exist. Quite surprisingly while
this domain has been thoroughly studied we obtained novel results which spurred the present
study. In a systematic study of mappings using the algebraic entropy method we obtained the
following system:

(xnxn+1 − 1)(xnxn−1 − 1)

xn+1xn−1
=

(
x2

n − 1
)
(xn − a)(xn − 1/a)

x2
n − p2

. (1)

In order to obtain the algebraic entropy of a rational mapping we start from x0 = 2 and x1 = f

and count the degree with respect to f for the numerator or denominator of xn. In the case of (1)
we obtained the following sequence of degrees dn = 0, 1, 3, 6, 11, 17, 24, 33, 43, 54, 67, . . .

which corresponds to quadratic growth. Thus the mapping is expected to be integrable. A
direct search for the conserved quantity as a rational function of xn, xn−1 led to the following
result:

K =
((xn−1 − xn)

2 − (p(xn−1xn − 1))2)
((

xn−1 + xn − (
a + 1

a

)
xn−1xn

)2 − (p(xn−1xn − 1))2
)

x2
n−1x

2
n(xn−1xn − 1)2

(2)

i.e. K is a ratio of two biquartic polynomials, i.e. quartic in xn and xn−1 separately. This
invariant is quite astonishing. As a matter of fact in all integrable cases known to date the
invariant was a ratio of biquadratic polynomials. The systems with an invariant of the latter
type belong to the family of QRT [8] mappings. The latter have, in the one-component case,
the form

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
(3)

where fi are specific quartic polynomials expressed in terms of 12 parameters of which five
correspond to genuine degrees of freedom.

K = α0x
2
n+1x

2
n + β0xn+1xn(xn+1 + xn) + γ0

(
x2

n+1 + x2
n

)
+ ε0xn+1xn + ζ0(xn+1 + xn) + µ0

α1x
2
n+1x

2
n + β1xn+1xn(xn+1 + xn) + γ1

(
x2

n+1 + x2
n

)
+ ε1xn+1xn + ζ1(xn+1 + xn) + µ1

. (4)

System (1) is clearly a non-QRT mapping. By this statement we mean that the mapping cannot
be found within the QRT parametrization as it stands. (This does not preclude the existence
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of some birational transformation which could reduce the mapping to a QRT form. We shall
come back to this point later.)

This is the first ever example of an integrable autonomous second-order system which
does not belong to the QRT family. However, its form is tantalizingly close to that of a QRT,
in particular if one introduces the change x → 1/x we obtain

(xnxn+1 − 1)(xnxn−1 − 1) = (xn − a)(xn − 1/a)
(
x2

n − 1
)

p2x2
n − 1

. (5)

Again, this mapping, although reminiscent of the mappings of the QRT q-PV family,

(xnxn+1 − 1)(xnxn−1 − 1) = (xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(pxn − 1)(rxn − 1)
(6)

is non-QRT itself: the combination of signs in the parameters of the rhs is just not the right
one. When we study the singularities of (5) we find the following patterns: {a, 1/a}, {1/a, a},
{1, 1}, {−1,−1}, {1/p,∞, 1/p}, {−1/p,∞,−1/p}. With the exception of the first two,
these singularity patterns are atypical. For comparison, the singularity patterns of (6) are
{a, 1/a}, {1/a, a}, {b, 1/b}, {1/b, b}, {1/p,∞, 1/r}, {1/r,∞, 1/p}. We remark that while
for (6) the various roots of the numerator and denominator of the rhs are exchanged in a single
singularity pattern for the last four patterns of (5) one enters and exits the singularity through
the same root.

There exists however a way to explain the existence of a mapping such as (5) and link it
to the discrete Painlevé equations. Let us start with the full asymmetric q-PV [9]

(xnyn − 1)(xnyn−1 − 1) = (xn − a)(xn − b)(xn − c)(xn − d)

(pqnxn − 1)(rqnxn − 1)
(7a)

(xn+1yn − 1)(xnyn − 1) = (yn − 1/a)(yn − 1/b)(yn − 1/c)(yn − 1/d)

(sqnyn − 1)(tqnyn − 1)
(7b)

where the parameters satisfy the constraints abcd = 1 and st = qpr . Next we try to obtain
autonomous reductions of this mapping, but instead of the trivial choice q = 1 we take
q = −1. In order for the mapping to be indeed autonomous we must take p + r = 0,
s + t = 0. Then the constraint becomes s2 = −p2, or s = ip. Next we introduce the scalings
x → x

√
i, y → y/

√
i, p → p/

√
i, a → a

√
i, b → b

√
i, c → c

√
i, d → d

√
i so that we now

have abcd = −1 instead of 1. We find thus the mapping

(xnyn − 1)(xnyn−1 − 1) = (xn − a)(xn − b)(xn − c)(xn − d)

p2x2
n − 1

(8a)

(xn+1yn − 1)(xnyn − 1) = (yn − 1/a)(yn − 1/b)(yn − 1/c)(yn − 1/d)

p2y2
n − 1

. (8b)

This autonomous mapping is in fact an asymmetric extension of (5). It turns out that it also
has a biquartic invariant

K = (x(x − s1) + y(y − s−1) − (p(xy − 1))2)2 − 4(x(x − s1) + s2)(y(y − s−1) − s2)

(xy − 1)2
(9)

where x, y stand for xn, yn or xn, yn−1 and s1 = a + b + c + d , s−1 = 1/a + 1/b + 1/c + 1/d ,
s2 = (ab + ac + ad + bc + bd + cd)/2.

From (8) we can obtain the symmetric reduction to precisely (5). We identify yn−1 =
X2n−1, xn = X2n, yn = X2n+1, etc and demand that (8b) be just the upshift of (8a).

The root 1/a on the rhs of (8b) should coincide with one of the roots on the rhs of (8a).
So unless a = ±1, without loss of generality one has to assume 1/a = b and thus d = −1/c.
Then, the root 1/c on the rhs of (8b) can only coincide with the root c on the rhs of (8a),
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so c = −d = ±1. Had we taken a = ±1 we would have found the same result, up to a
renaming of the parameters.

3. Constructing mappings with biquartic invariants

From this construction we see clearly that (5) as well as its asymmetric form (8) are just
special, artificially autonomized, cases of (nonautonomous) discrete Painlevé equations. Once
this construction has been put forward for q-PV, it is quite easy to extend it to other families
of discrete Painlevé equations and try to obtain autonomous mappings with quartic invariants.

As an illustration we start from the q-PV which was introduced in [10]

ynyn−1 = (xn − aqn)(xn − bqn)

1 − pxn

(10a)

xn+1xn = (yn − cqn)(yn − dqn)

1 − ryn

(10b)

with the constraint cd = qab. We try again to obtain an autonomous reduction with q = −1.
This imposes a + b = c + d = 0 and c2 = −a2. One could leave the mapping under this form,
but for reasons that will appear shortly, we introduce a change of variables, x → x/

√
pr ,

y → iy/
√

pr , r → r/i. Then the mapping becomes

ynyn−1 = x2
n − t2

sxn − 1
(11a)

xn+1xn = y2
n − t2

yn/s − 1
(11b)

where s = √
p/r and t2 = pra2. The autonomous mapping resulting from this construction

is indeed integrable since it is just a subcase of an integrable, nonautonomous discrete Painlevé
equation. Moreover, it possesses a biquartic invariant, and again this mapping is not of the
QRT type:

K ≡ x2y2(sy − x/s)2 + 2xy(x2 − y2)(sy − x/s) + 2t2xy(sy + x/s) + (x2 + y2 − t2)2

x2y2

(12)

where again x, y stand for xn, yn or xn, yn−1.
With this choice of variables, the identification used after equation (9) (but for simplicity,

we denote the new variable by x rather than X ) leads, in the special case s = 1/s, to a
symmetric, one-component, form of this mapping

xn+1xn−1 = x2
n − t2

xn − 1
. (13)

The invariant for (13) can be simply obtained from (12):

K = x2
nx

2
n−1(xn − xn−1)

2 − 2xnxn−1(xn + xn−1)((xn − xn−1)
2 − t2) +

(
x2

n + x2
n−1 − t2

)2

x2
nx

2
n−1

.

(14)

It is interesting to study the singularity patterns associated with (13). We find {1,∞,∞, 1}
and {±t, 0,±t}. Again, the latter patterns are atypical ones since they do not exchange the
two roots of the numerator t and −t , as the same root appears as the entry and exit point of the
singularity.



A new class of integrable discrete systems 9209

We have identified one more mapping with biquartic invariant along the same procedure.
Contrary to the first two mappings though, it has only an asymmetric form. Starting from
q-PVI [11]

ynyn−1 = (xn − aqn)(xn − bqn)

(1 − pxn)(1 − sxn)
(15a)

xn+1xn = (yn − cqn)(yn − dqn)

(1 − ryn)(1 − tyn)
(15b)

with again cd = qab, and in addition ps = rt , the choice q = −1 leads to an autonomous
mapping as before when a + b = c + d = 0, with as a consequence c2 = −a2. We obtain

ynyn−1 = x2
n − a2

(1 − pxn)(1 − sxn)
(16a)

xn+1xn = y2
n + a2

(1 − ryn)(1 − tyn)
. (16b)

(Here there is no point in trying the change of variables y → iy that makes the numerators
identical, because the condition would become ps = −rt , and then it would be impossible to
make the denominators identical.) Calling f the common value of ps and rt , and denoting
g = p + s, h = r + t , the invariant in this case is given by

x2y2K = x4y4f 2 − 2xy(hx + gy)(f x2y2 + x2 + y2) + x2y2(2f (x2 + y2) + (hx + gy)2)

+ 2a2xy(hx − gy) + (y2 − x2 + a2)2. (17)

4. Interpretation of mappings with biquartic invariant

Although these mappings are by construction integrable one can wonder as to the precise
method of their integration. Since all the systems we analysed above are obtained as special
limits of q-discrete Painlevé equations (by giving to q a special value) one can in principle use
the integration of these Painlevé equations in order to integrate these autonomous mappings
as well. The difficulty lies in the fact that not all of the Lax pairs for q-Painlevé equations are
known to date. Thus we will suggest another approach, that of the integration of the quartic
invariant. As we have shown in [12], the quadratic invariant associated with QRT mappings
can be parametrized in terms of elliptic functions. On very general arguments we expect the
explicit integration of the mappings presented here to be also in terms of elliptic functions.
This would be a further indication as to the existence of a birational transformation reducing
these mappings to a QRT form, but as we explain below its explicit construction is of a great
practical difficulty. As a matter of fact, the explicit construction of the solution, even of a
given QRT mapping, is exceedingly difficult. This is due to the fact that the reduction of the
biquadratic correspondence associated with the invariant to the canonical form necessitates
lengthy (sometimes prohibitively so) calculations. Thus we shall not pursue precisely in this
direction. Rather, we shall address the more general question of the possible integration of
mappings with biquartic invariants the form of which is inspired by the invariants obtained
above.

Our main assumption is that there exist mappings with quartic invariants the solution of
which can be parametrized by elliptic functions. Equivalently, we assume that there exist
biquartic correspondences which are integrable, and can also be parametrized by elliptic
functions.

In the case of the biquadratic correspondence coming from the QRT mapping it was
easy to show that xn = A sn u, where sn is a Jacobi elliptic function of modulus k, and
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xn±1 = A sn(u ± φ) was, up to a homography, the correct parametrization (with some
constraints on A, φ). Here we shall generalize this assumption to xn+1 = A sn(u + φ), if n is
even, say, and xn+1 = A sn(u + χ) if n is odd, where φ �= χ . Using the addition properties of
elliptic functions, we can express xn±1 in terms of xn. If n is even,

xn+1 =
xn cn φ dn φ + A sn φ

√(
1 − x2

n

/
A2

) (
1 − k2x2

n

/
A2

)

1 − k2x2
n sn2φ/A2

(18a)

xn−1 =
xn cnχ dnχ − A snχ

√(
1 − x2

n

/
A2

) (
1 − k2x2

n

/
A2

)

1 − k2x2
n sn2χ/A2

. (18b)

Since we are looking for a bihomographic mapping in terms of xn+1, xn−1, we eliminate the
square roots between the two expressions. This results in the mapping

xn+1xn−1
(
1 + k2x2

n sn φ snχ/A2) + xn(xn+1 + xn−1)
snχ cn φ dn φ − sn φ cnχ dnχ

sn φ − snχ

+ x2
n + A2 sn φ snχ = 0. (19)

Since this is invariant under the interchange φ ↔ χ , (19) is also valid for odd n. We can thus
rewrite (19) schematically as

xn+1xn−1
(
1 + ax2

n

)
+ cxn(xn+1 + xn−1) + x2

n + b = 0. (20)

Mapping (20) possesses a biquartic invariant which reads

K = acx2y2 + (ab + c2 − 1)xy + bc

c(x2 + y2) + (c2 − ab + 1)xy
+

c(x2 + y2) + (c2 − ab + 1)xy

acx2y2 + (ab + c2 − 1)xy + bc
(21)

where x stands for xn and y for xn±1. (Note that K is of the form L + 1/L. At each step of the
evolution L becomes its inverse, so K is conserved.) On the other hand, (21) can be viewed
as a 2–2 correspondence between x and y. Thus the fact that the solutions of the mapping are
known in terms of elliptic functions means that (21), as a correspondence, can be parametrized
by x = A sn u and for y one of the four choices A sn(u ± φ), A sn(u ± χ). After n iterations,
the number of possible images grows only polynomially in n, as the nth iterate must be of the
form A sn(u + jφ + hχ) with |j | + |h| � n and j + h ≡ n mod(2).

Given the mapping (20), how does one proceed to integrate it for given initial conditions
x0 and x1? The first step is to compute the value of the quantity L (by which we mean the first
part of K) from the initial data. Using the explicit form of the solutions one can show that
L = sn φ/snχ . Furthermore, the ratio a/b furnishes the ratio k2/A4. Substituting back into c
we obtain finally for A the biquadratic equation

4c2aA4 + A2(K((c + 1)2 − ab)((c − 1)2 + ab) + 2(ab − 1)2 − 2c4) + 4c2b = 0. (22)

Knowing A we can compute the modulus and using the parameters, obtain sn φ and snχ since
their ratio is already known, and their product is c/A2. In fact since we have to solve a
second-order equation for A2, we have two choices for this quantity. But this does not lead
to different solutions. Calling A2

1 and A2
2 the two solutions for the quantity A2 and similarly

the corresponding solutions for k2, we have k2
1k

2
2 = A4

1A
4
2a

2
/
b2 = 1, and in fact A2

1 = k2
1A

2
2.

When one looks at the consequences of this relation on the elliptic functions this only means
that the cn and dn functions are permuted. Since we are working with a priori complex
quantities, k2 may well be a complex number and the periods of the elliptic functions need
not be real and pure imaginary, but any arbitrary complex numbers. So there is no essential
difference between cn and dn, and choosing one or the other solution for A2 is irrelevant: we
have the same functions with different names. If both solutions for A2 were to be real, it would
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be more natural to take the smaller one, so that the corresponding choice for k2 be less than
unity, but this is just a matter of convenience. The additional choices of sign, for A itself, and
a global sign on sn φ and snχ (since only their product and ratio are fixed) are also irrelevant:
they can be absorbed in a redefinition of the phase u, by either a shift of half a period (sign of
A), or a symmetry with respect to the origin (signs of A,φ and χ), or both (signs of φ and χ).
So given (20) and two initial points x0, x1 one can reconstruct, up to irrelevant choices of
parametrization, all the parameters of the elliptic functions involved in the expression of xn

for arbitrary n.
The degree growth of the iteration of mapping (20) can be easily studied. We find

0, 1, 2, 5, 8, 13, 18, 25, 32, . . . for the initial condition x0 = 1 and x1 = f , which corresponds
to a quadratic growth, as expected given the integrable character of this mapping. The
singularity pattern of the mapping can be more easily studied if we rescale the dependent
variable so as to bring it to the form

xn+1xn−1
(
1 − x2

n

)
+ sinh α sinh βxn(xn+1 + xn−1) + x2

n − cosh2 α cosh2 β = 0. (23)

One singularity appears whenever xn−1
(
1 + x2

n

) = xn sinh α sinh β leading to xn+1 = ∞,
with subsequent xn+2 = −xn, xn+3 = −xn−1 satisfying thus xn+3

(
1 + x2

n+2

) = xn+2

sinh α sinh β, and from there on the singularity is confined. However, four other singularity
patterns do exist, {± cosh α, ± sinh β cosh α/ sinh α, ± cosh α} and {± cosh β, ± sinh α

cosh β/ sinh β, ± cosh β}. They are nonstandard, inasmuch as the singularity is entered
and exited through the same root. In the light of this result, we can surmise that the presence
of such nonstandard singularity patterns may be an indication of the existence of a biquartic
invariant for a mapping.

5. Conclusion and outlook

In this paper, we have introduced a new family of second-order, autonomous integrable
mappings. After the derivation of the QRT family of integrable mappings more than a
decade ago and the subsequent intense activity in the domain of integrable discrete systems,
the discovery of this new family was, to say the least, unexpected. Our main result is
that second-order autonomous mappings with quartic invariants do exist and we have given
several examples of these. What is interesting is that these mappings can be obtained by
the autonomization of discrete Painlevé equations. Thus their integrability can be linked
to that of the latter, more complicated, systems. The question of the possible integrability
of biquartic correspondences, the form of which is inspired by the quartic invariants of the
mappings presented here,was also examined. We have shown that if one considers an evolution
with two different alternating steps, one can construct a biquartic correspondence which is
parametrized exactly by elliptic functions.

Several questions remain open at this stage. The first concerns the precise integration of
the mappings we obtained. Although we expect the general integrable second-order mapping
with biquartic invariant to be integrable in terms of elliptic functions, we surmise that the
explicit construction of the solution may turn out to be exceedingly cumbersome in most
cases. Given this difficulty, the relation of these mappings with discrete Painlevé equations
is an indication that their integration may also be carried out in a different, perhaps simpler,
way. The discovery of one class of second-order integrable mappings which do not belong to
the QRT family raises legitimately the question of the existence of other such classes. This is
reinforced by the discovery of another family of integrable second-order mappings which go
beyond the QRT parametrization, recently derived by Roberts and Iatrou [13].
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We expect the dual approach, integrability detection (based on degree growth and
singularity analysis techniques) and construction of solutions (assuming a given family of
functions) to be particularly useful in this direction.
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